β(1,3)-Glucanosyl-Transferase Activity Is Essential for Cell Wall Integrity and Viability of Schizosaccharomyces pombe
نویسندگان
چکیده
BACKGROUND The formation of the cell wall in Schizosaccharomyces pombe requires the coordinated activity of enzymes involved in the biosynthesis and modification of β-glucans. The β(1,3)-glucan synthase complex synthesizes linear β(1,3)-glucans, which remain unorganized until they are cross-linked to other β(1,3)-glucans and other cell wall components. Transferases of the GH72 family play important roles in cell wall assembly and its rearrangement in Saccharomyces cerevisiae and Aspergillus fumigatus. Four genes encoding β(1,3)-glucanosyl-transferases -gas1(+), gas2(+), gas4(+) and gas5(+)- are present in S. pombe, although their function has not been analyzed. METHODOLOGY/PRINCIPAL FINDINGS Here, we report the characterization of the catalytic activity of gas1p, gas2p and gas5p together with studies directed to understand their function during vegetative growth. From the functional point of view, gas1p is essential for cell integrity and viability during vegetative growth, since gas1Δ mutants can only grow in osmotically supported media, while gas2p and gas5p play a minor role in cell wall construction. From the biochemical point of view, all of them display β(1,3)-glucanosyl-transferase activity, although they differ in their specificity for substrate length, cleavage point and product size. In light of all the above, together with the differences in expression profiles during the life cycle, the S. pombe GH72 proteins may accomplish complementary, non-overlapping functions in fission yeast. CONCLUSIONS/SIGNIFICANCE We conclude that β(1,3)-glucanosyl-transferase activity is essential for viability in fission yeast, being required to maintain cell integrity during vegetative growth.
منابع مشابه
Schizosaccharomyces pombe Rgf 3 p is a specific Rho 1 GEF that regulates cell wall β - glucan biosynthesis through the GTPase Rho 1 p
The fungal cell wall is the essential cellular boundary, controlling many transport processes, cellular metabolism and, indeed, all communications with the extracellular world. Because of its mechanical strength, it allows cells to withstand turgor pressure and consequently prevents cell lysis. In the fission yeast Schizosaccharomyces pombe, the cell wall mainly consists of three polysaccharide...
متن کاملRegulation of Cell Wall Synthesis by the Clathrin Light Chain Is Essential for Viability in Schizosaccharomyces pombe
The regulation of cell wall synthesis by the clathrin light chain has been addressed. Schizosaccharomyces pombe clc1Δ mutant was inviable in the absence of osmotic stabilization; when grown in sorbitol-supplemented medium clc1Δ cells grew slowly, formed aggregates, and had strong defects in morphology. Additionally, clc1Δ cells exhibited an altered cell wall composition. A mutant that allowed m...
متن کاملExtracellular cell wall β(1,3)glucan is required to couple septation to actomyosin ring contraction
Cytokinesis has been extensively studied in different models, but the role of the extracellular cell wall is less understood. Here we studied this process in fission yeast. The essential protein Bgs4 synthesizes the main cell wall β(1,3)glucan. We show that Bgs4-derived β(1,3)glucan is required for correct and stable actomyosin ring positioning in the cell middle, before the start of septum for...
متن کاملA genomewide screen in Schizosaccharomyces pombe for genes affecting the sensitivity of antifungal drugs that target ergosterol biosynthesis.
We performed a genomewide screen for altered sensitivity to antifungal drugs, including clotrimazole and terbinafine, that target ergosterol biosynthesis using a Schizosaccharomyces pombe gene deletion library consisting of 3,004 nonessential haploid deletion mutants. We identified 109 mutants that were hypersensitive and 11 mutants that were resistant to these antifungals. Proteins whose absen...
متن کاملPapulacandin B resistance in budding and fission yeasts: isolation and characterization of a gene involved in (1,3)beta-D-glucan synthesis in Saccharomyces cerevisiae.
Papulacandin B, an antifungal agent that interferes with the synthesis of yeast cell wall (1,3)beta-D-glucan, was used to isolate resistant mutants in Schizosaccharomyces pombe and Saccharomyces cerevisiae. The resistance to papulacandin B always segregated as a recessive character that defines a single complementation group in both yeasts (pbr1+ and PBR1, respectively). Determination of severa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010